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Abstract

In this extended abstract we describe our work on deter-
mining relative skill from video [3]. We formulate the prob-
lem as pairwise and overall ranking of video collections,
and propose a supervised deep ranking model to learn dis-
criminative features between pairs of videos exhibiting dif-
ferent amounts of skill. We test our method on both station-
ary and egocentric recordings, but note that the egocentric
allows for better performance, due to the camera position’s
closeness to the action as well as information in the head
motion. We evaluate on a variety of tasks ranging from
drawing to kitchen activities that result in increased ranking
accuracy from 73.1% to 78.7% for egocentric viewpoints.

1. Introduction
How-to videos on sites such as Youtube and Vimeo,

have enabled millions to learn new skills by observing those
more skilled perform the task. From drawing to cooking and
repairing household items, learning from videos is nowa-
days a commonplace activity. With wearable cameras be-
coming more readily available many of these instructional
(how-to) videos are recorded from an egocentric perspec-
tive. Such a viewpoint offers a more focused view of the
task and allows the viewer to gain an immediate under-
standing by putting themselves in the place of the recorder.
However, collections of how-to videos tend to be loosely
organised without guarantee of the level of skill of the con-
tributors. Therefore, the person wishing to learn has to de-
cide who demonstrates the skill best and who to learn from.
Automatic skill determination is crucial for this problem.
By ranking videos based on the skill displayed we will not
only be able to assess skill in specific training tasks, as has
been done in surgery [10], but also assess relative skill in
daily living tasks, aiding automated, objective organisation
of how-to videos.

In our recent work [3] we used stationary footage to de-
termine skill. In this abstract we demonstrate our method is
also capable of using egocentric video for skill determina-
tion and that egocentric video provides a unique viewpoint

with less occlusions of manipulated objects and extra infor-
mation, allowing us to achieve better results.

2. Related Work

Skill determination in video has received relatively little
attention particularly in egocentric video. The majority of
existing works in skill determination focus on specfic do-
mains, for instance surgical training [5]. Malpani et al. use
hand-crafted features from a combination of video and ac-
celerometer data to assess skill. The features used, such as
‘area travelled by instrument tip’, are specific to surgical
training tasks and are therefore not generalisable to other
domains. Also specific to surgical tasks, Zia et al. [10]
utilise the structured nature of surgical tasks; using entropy-
based features to detect irregularity within performances.

Another domain that has been the focus of previous
works is sports [1, 6]. Bertasius et al. [1] assess skill in
Basketball from egocentric videos, using a convolutional
LSTM network to detect basketball events in the videos,
followed by Gaussian mixtures to evaluate skill from these
events. As egocentric video is used, the footage directly
demonstrates what is happening to the player himself, elim-
inating the need for tracking used in third person views and
reflecting the decisions being made by players.

Similar to our own work, Kim et al. [4] aim to evaluate
skill in a more general sense for a variety of tasks. They first
obtain action units for each participants performance of a
task and evaluate the semantic similarity between the action
units of an expert performance and a test video to determine
whether the same activity is performed. Our work goes be-
yond this in two ways. Firstly, we don’t rely on having
‘expert’ performances available during training. Secondly,
instead of determining whether the same activity is being
performed in relation to the expert, we assume that we have
multiple videos of the same activity and aim to rank these
videos based on their performance of that same activity.

3. Method

Our method, described in detail in [3], utilises two-
stream Temporal Segment Networks (TSN) [9] to model
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Figure 1: Training for skill determination for the spatial stream. a) Each video in the pair are divided these into N splits for
data augmentation. b) Paired splits are then divided up into 3 equally sized paired segments as in [8]. c) The TSN selects a
snippet randomly from each segment. d) Each of the snippets are fed into a Siamese architecture with shared weights. e) The
loss function computes the margin ranking loss of the pair. The temporal stream works similarly.

the long range temporal structure of the videos. To deter-
mine the relative skill levels displayed in different videos
a Siamese version of TSN is used, meaning the network
is trained on pairs of videos. Each pair of input videos
(pi, pj) ∈ P is associated with a label indicating whether
pi displays more skill than pj or vice-versa. Each input
video in the pair is then split into K equally sized segments
as in [9], with the TSN randomly selecting a snippet from
each segment. We use K = 3 in line with [9]. In the spatial
network this snippet is a single RGB frame, while the tem-
poral network snippets consist of a stack of 5 optical flow
frames in both the horizontal and vertical directions. The six
snippets are fed into the Siamese CNN with weights shared
between the six identical networks. These networks output
a score per snippet, from which consensus scores f(pi) and
f(pj) are formed for the input videos in the pair (pi, pj). To
learn a model to determine relative skill between the input
videos a margin loss layer is used:

min :
∑

(pi,pj)∈P

max(0,m− f(pi) + f(pj)) (1)

where pi is ranked higher than pj . During training this loss
aims to separate the input videos into the correct ranking by
the margin m = 1, and back propagates according to the
violation of this condition.

In order to make use of the longer nature of videos in
skill determination and increase the size of our training data
we augment the training data by splitting the videos into
N uniform splits before input to the network (Fig 1a). We
assume progress through subcomponents of the task is com-
parable between videos, even if the time taken to complete
the task is different. We also assume that an annotation

pi � pj holds for the pairs on subsections of the video pair
(pi, pj) Thus, for a video pair (pi, pj) we compare the pairs
(pi

k, pj
k) ∀k = 1...N .

When testing a video we uniformly sample σ snippets
from each video pi and form ten inputs from crops and flips
of the four corners and centre of the images, as in [7]. For
each snippet pij we gain an output score f(pij) for both the
spatial network fs(pij) and temporal network ft(pij). We
then combine these two predictions with a weighted average
and combine the predictions of all the snippets to create an
overall video prediction using the following equation:

f(pi) = SegmentConsensus(αfs(pij) + (1− α)ft(pij))
(2)

In this paper we use mean as the segment consensus func-
tion. For an investigation of different functions see [3].

4. Datasets
In our evaluation we compare the results of the skill

determination of both stationary and egocentric recordings
of three datasets. These datasets consist of the following
tasks: rolling out pizza dough, drawing and using chop-
sticks. Each of the datasets are partitioned in four folds for
training and testing and are detailed below.

Drawing This dataset consists of 8 participants drawing
copies of two different reference images: a photograph of
a hand and a picture of the Sonic the Hedgehog cartoon.
Each participant draws the reference images 5 times, result-
ing in 40 videos. We use the stationary recordings from [3]
as well as egocentric recordings from a head-mounted Go-
Pro not previously tested. Both GoPros recorded the draw-
ing tasks at a resolution of 1920x1080 and a frame rate of
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Figure 2: A comparison of the stationary and egocentric
viewpoints for each of the three datasets.

60fps.

Chopstick-Using Similarly to the Drawing dataset we com-
pare the stationary recordings tested in [3] as well as ego-
centric recordings. Again both cameras recorded at a res-
olution of 1920x1080 and 60fps. In the Chopstick-Using
dataset 8 participants each attempt to move four beans be-
tween two identical plastic tubs 5 times, totalling 40 videos.

Dough-Rolling This consists of a dough-rolling task from
the pizza making activity in the CMU-MMAC dataset [2].
In total there are 33 videos in this dataset from 33 distinct
participants. The videos in this dataset consist of a partici-
pant opening the dough container and rolling out the dough
into a rectangle. The egocentric recording of this data was
tested in [3], here we also test a stationary recording of
the same activity and same time frame for each participant.
Frames from both view points are shown in Figure 2. CMU-
MMAC contains five different non-egocentric viewpoints,
the one shown in Figure 2 was chosen as it is the least oc-
cluded stationary camera during the dough-rolling task.

4.1. Annotations

We assume that provided a human has a good enough
view of the task in both videos in a pair they can success-
fully determine which video they believe displays a higher
level of skill and that if multiple people are in unanimous
agreement one participant displays more skill than another
in a video then that the ranking will hold in another view-
point. Therefore, we use are annotations from [3] for both
egocentric and stationary data. These annotations consisted
of Mechanical Turk workers selecting which video in a pair

of videos displays more skill. We assume that if all four
workers tested for each pair were able to make a unanimous
decision then the strict skill pairings also hold for the ego-
centric versions of the recordings. Thus, the Dough-Rolling
task consists of 181 consistent pairs, the Drawing 247 con-
sistent pairs (118 for the Sonic-Drawing task and 129 for
the Hand-Drawing task) and the Chopstick-Using 536.

4.2. Different Viewpoints

From Figure 2 we can see that the footage from the
stationary and head-mounted cameras are similar for the
Drawing and Chopsticks-Using tasks. Both show a clear,
un-occluded view of the task in the centre of the image and
show only the hands, rather than being third person. There-
fore, the main difference between the data in the station-
ary and egocentric footage for these datasets is that head-
mounted data contains motion information for the person’s
head, although resulting in motion blur, and gives us more
information about where the participants attention is fo-
cussed. On the other hand, the stationary footage for the
Dough-Rolling task is closer to a third person view. Al-
though in the example shown (and many of the other videos)
the action takes place near the centre of the image there is
more variability in the position the task can take place in
and it is not guaranteed to be in the centre of the image or
necessarily always in view. Therefore, the differences be-
tween the different types of footage for the Drawing and
Chopstick-Using datasets still hold here, but with the addi-
tion that the egocentric footage guarantees the task is taking
place in the centre of the image.

5. Experimental Results
5.1. Evaluation Metric

We use pairwise precision output rankings of each test-
ing fold. This is defined as:

#Correctly ordered pairs
Total #pairs

(3)

A pair is defined as correctly ordered if for a pair (pi, pj)
where the annotations contain the preference pi � pj the
method outputs f(pi) > f(pj).

For implementation details see [3].

5.2. Results

The results of four-fold cross validation on each of the
three datasets for both types of footage. We use σ = 25 for
all results and we report the results for the best α (Eq. 2) for
each result. We first note that the egocentric footage pro-
vides a much higher accuracy in two out of the three tasks.
We also note that this is the same for the individual spa-
tial and temporal results as well as two-stream, the highest
result.



Task Random Stationary Egocentric

Spatial Temporal Two-stream Spatial Temporal Two-stream

Drawing 50 76.7 79.0 82.1 72.9 72.3 73.1
Chopstick-Using 50 66.8 69.8 70.0 78.4 73.5 78.7
Dough-Rolling 50 52.3 56.0 56.0 77.0 76.1 78.2

Table 1: Results of four-fold cross validation on both the egocentric and stationary footage for each of the three datasets. For
two out of three datasets the egocentric result outperforms the stationary one.

The largest difference in performance between stationary
and egocentric is in Dough-Rolling. Here the egocentric
data outperforms the stationary by 22.2%. We believe this
is mainly due to the clearer view present in the egocentric
data for the Dough-Rolling task. The fact that we train on
different image crops and test on the crops of the corners
and centre should mitigate the effect of the dough-rolling
not necessarily being in the centre, however the clear view
of the task from egocentric camera has a large impact on the
results.

The Chopstick-Using dataset also displays a large im-
provement when using an egocentric view. From inspecting
the videos for which our method performs much better on
the egocentric recordings of the task, we see that the main
advantage of the egocentric viewpoint is that it has a much
better viewpoint of what is happening while attempting to
pick up on the beans, therefore offering more information
in relation to the skill of the participant.

Alternatively, drawing performs worse when using the
egocentric data as opposed to the stationary data. One is-
sue with a head-mounted camera for this task is that the
camera can become so close that it loses information about
that task. For instance, one participant mostly looked at
the reference image while drawing, which is reflected in the
head-mounted recordings. Although this gives us informa-
tion about where the participant’s attention is focussed we
lose information by only seeing a small portion of the draw-
ing at a time and not necessarily the hand.

For a further analysis, including analysis of different pa-
rameters and consensus functions see [3].

6. Conclusion
In this paper we have discussed our recent work on skill

determination. We have shown our method works for both
stationary and egocentric data and demonstrated egocentric
data provides an opportunity over the stationary data that
is advantageous for automatic determination of skill from
video.
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